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We consider a class of random lattice operators including Schr6dinger operators 
of the form H= -A + w+gv, where w(x) is a real-valued periodic function, g 
is a positive constant, and v(x), x ~ Z a, are independent, identically distributed 
real random variables. We prove that if the operator -z l  + w has gaps in the 
spectrum and g is sufficiently small, then the operator H develops pure point 
spectrum with exponentially decaying eigenfunctions in a vicinity of the gaps. 
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INTRODUCTION 

We cons ider  a mat r ix  ope ra to r  H =  H o + g v  act ing in 12(7/d) as follows: 

(H~b) (x )=  ~ Ho(x ,y )~b(y )+gv(x )~b(x ) ,  x e Z  a (1) 
) ,~Z  d 

where v(x), xeT/d, are real, i ndependen t ,  ident ical ly  d i s t r ibu ted  r a n d o m  
variables,  g is a posi t ive cons tan t ,  a n d  H0 is a local per iodic  opera to r  in the 
fol lowing sense: there exists a na tu ra l  n u m b e r  p (called the range  of Ho) 
such that  if I x - y l > p ,  then  H o ( x , y ) = O ,  and  there exists a vector  
q = ( q l  ..... q d ) ~ - d  with posit ive c o m p o n e n t s  such that  H o ( x , y ) =  
H o ( x + q ' ,  y + q ' ) ,  Vx, ye~_ d a n d  Vq' e q l Z x  . . .  xqaZ .  We show that  the 
spec t rum of such an  ope ra to r  H0 consists  of a finite n u m b e r  of in tervals  
which we shall  call b a n d s  of the spect rum,  the intervals  be tween bands  of 
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the spectrum (if any) being the gaps in the spectrum. One can easily 
construct local periodic operators exhibiting gaps in the spectrum. For 
instance, let Ho = - A  + aw, where A is the lattice Laplacian, a is a positive 
constant, and w is the operator of the multiplication by a real, periodic, 
nonconstant function w(x), so Ho is a local periodic operator. Since zl 
is a bounded operator, it is clear that Ho has gaps in the spectrum if the 
constant a is large enough. Another example of a periodic operator Ho 
exhibiting gaps in the spectrum is constructed in ref. 1. 

According to the philosophy of Anderson localization, localized states 
can appear in a vicinity of movable edges of gaps in the spectrum, i.e., such 
edges that depend on random coefficients. ~2'3~ It is known that operators of 
the form (!)  with probability 1 have pure point spectrum with exponen 
tially decaying eigenfunctions for low energies, i.e., far enough from the 
spectrum of Ho, 14 Ill and also near the endpoints of the spectrum, t~5) We 
prove here that if the spectrum of the operator Ho has gaps, then for a 
sufficiently small constant g the random operator H with probability 1 
develops pure point spectrum with exponentially decaying eigenfunctions in 
a vicinity of all gaps of the operator Ho. 

Our proof of localization in the gaps is based on the multiscale 
method used by von Dreifus and Klein 19~ and Spencer ~tSI and on the rele- 
vant spectral properties of periodic operators and their restrictions to finite 
domains that we develop in this paper. 

1. S T A T E M E N T  OF RESULTS 

We begin with a precise definition of a local periodic operator. Let D 
be a natural number and /2( 7/d, C o) be the Hilbert space of CD-valued 
functions q~(x), with the standard norm ll~pll2 = Z rtp(x)l 2 Let us denote by 
s the linear space of all CD-valued functions r If D = l, we shall just 
write [2(/7d) and s in place of l'-(Y a, C ~) and s respectively. Now we 
introduce a matrix H o with entries Ho(x,y), x, yET] d, which are in turn 
D x D matrices with complex entries. We shall consider here just symmetric 
matrices Ho; thus Ho(x,y)=H*(y,x) ,  x, y E  7/d, where for a matrix 
(operator) A the adjoint to its matrix (operator) is denoted by A*. We 
define a norm [x[ ~ for x = (xl ..... Xa) ~ 7Jd as follows: 

I x l ~ =  max Ixjl 
1 ~<.j~< d 

Def in i t ion .  We shall call a matrix A local if there is a natural 
number p such that A(x,y)=O whenever [y-x[~. >p. For a vector q =  
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(q~ . . . . .  qd) e ~d with positive coordinates we shall call a matrix A q-periodic 
(or just periodic) if it is local and the following equalities hold: 

A ( x , y ) = A ( x + q ' , y + q ' ) ,  Vx, ye~_ d, Vq'~q~77x . . ,  •  (1.1) 

We associate with any periodic matrix He and operator denoted by 
same symbol whose action is defined in standard fashion by ( H o ~ ) ( x ) =  
Z,. He(x, y) ~(y). Clearly, a periodic operator H o is correctly defined as an 
operator from ~ o  to &a o and it is a bounded self-adjoint operator in 
12(Z d, C~ In particular, a q-periodic operator H o maps any q-periodic 
function q~ onto a q-periodic function Ho qJ. 

R e m a r k .  If He = - A  + w, where w is the operator of the multiplica- 
tion by a q-periodic function, then H o is a q-periodic operator. 

Schr6dinger operators with periodic potentials on ~d are the subject of 
the well-known Floquet-Bloch theory. (~2) Since modifications needed to 
extend the theory to the lattice case are hard to find in the literature, we 
will state and prove what we need. 

Theorem 1 (Band structure of spectrum). If He is a periodic 
operator on lZ(Z d, C~ then its spectrum c~ o consists of a finite number J 
of intervals, namely 

t7o= U E#l~176 0~<pl~ ~ l<~i<~J; 
l ~ i ~ J  

21.o)< ~'~+"c~ 1 <~i<<.J- 1 (1.2) 

Defini t ion (Gaps). We call the above intervals bands. If J >  1, then 
we shall call the intervals t2 c~ , to) ~ 1 ~< i~< J -  1, gaps in the spectrum i ~ l ~ i + l I  ~ 

(or just gaps). 

We have already discussed in the introduction that periodic operator 
with gaps in the spectrum can be easily constructed; in particular, the 
lattice Schr6dinger operator of the form H e = - A  + w with a periodic 
potential may have gaps in the spectrum. Thus, we shall just assume the 
existence of gaps in the spectrum of the operator He. 

From now on we always have D =  1, unless stated otherwise. The 
main operator we are interested in is the operator H = H o + gv, where g is 
a positive cons(ant and the operators He and v satisfy the following 
assumptions: 

A s s u m p t i o n  H. He is a q-periodic self-adjoint operator on 12(Zd) 
with J - l > 0 g a p s  I.~ (~ ' tel ), l<<.i<~J-1 ~ " i  ~ I ' t i +  1 
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Assumption V. v is the operator on 12(~_ a) given by multiplication 
by v(x),  where v(x),  x ~ y_a, are independent, identically distributed random 
real-valued variables on a probability space with probability measure P. 
The probability distribution /~ of v(0) has a bounded density q~ with 
Pl~011 ~, ~ Do. For convenience we take ~ ( v ( x ) ) =  [ -  1, 1], where ~(v(0)) is 
the essential range of the random variable v(0). 

T h e o r e m  2 (Location of the spectrum). Let r  r x e ~_,1, be 
a set of real-valued, independent, identically distributed random variables 
on the probability space ( s  (tn~(2) such that for some finite 
constant ~,, Cz we have 

.~(~(x)) = ['~,, ~_~3 (1.3) 

Suppose that the operator H acts in the Hilbert space /2(Z a) and 
H =  Ho + ~, where Ho satisfies Assumption H and ~ is the operator given 
by multiplication by the function ~(.). Then the following statements hold: 

(i) With probability 1 the spectrum ~(H) of the operator H is non- 
random, i.e., there exists a closed set or___ R such that with probability 1, 
tr(H) = tr; in addition, with probability 1 the spectrum can be represented 
as follows: 

a ( H )  = tr = a(Ho)  + ~?(r = a(Ho) + [~l, r (1.4) 

where for two subsets A, B~_R,  A + B =  {2+# :  2EA, / ~ B } .  

(ii) Let us set ~ ( x ) = g v ( x ) ,  where v satisfies Asdsumption V; if we 
use the notations of TGheorem 1 and introduce gi by the equality 

LL ( o )  _ _  g ,=  ( , , + ,  ).I~ l<~ i<~J- -1  (1.5) 

then for any 0~<g < gi with probability 1 the spectrum a ( H )  = a has a non- 
empty gap 

( 2 i , ~ l i + l )  ' 2i = CO~ . CO) (1.6) 2 i "~-g<lAi+l =/xi+t--g 

t2(0~ ,,(o) ~ in the spectrum of which is associated naturally with the gap , ~ , ~,i+ ~j 
the unperturbed periodic operator. 

In other words, Theorem 2 says that the spectrum of the random 
operator H is nonrandom and if the constant g is smal enough, then it 
has a band-gap structure associated naturally with the spectrum of the 
operator Ho. Moreover, taking the coefficient g small enough, we can open 
up any gap in the spectrum of the unperturbed periodic operator. 

The main statement of this paper is the following. 
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T h e o r e m  3. Let H= Ho +gv, where v and H o satisfy Assumptions 
V and H, respectively. Assume also that for some i, 1 ~< i~< J -  1, we have 
0 ~<g < g i  [so (2i, Pi+ 1) is a gap in the spectrum of H with probability 1]. 
Then for a n y / 2  +, 0 < / 2  + < 1, there exists/3 + --/3 + (d, Ho, Do, /2  +, g) > 0, 
such that if the distribution p of v(0) satisfies the condition p + -  
#{ I-/2+, 1 ] < / 3 + ,  the operator  H is exponentially localized in the interval 
( 2 ~ - 6  +, 2i), for some 6 + > 0, with probability 1. Moreover,  

lim 6 + = g ( 1 - / 2 + )  (1.7) 
' p +  ~ 0 

Similarly, given - 1 < / 2 _  < 0, there exists /3_ = /3_  (d, Ho, Do, /2  _,  g)  > 0 
such that if p_  - / z {  [ -  1, ~ _  ] } < / 3 _ ,  H is exponentially localized in the 
interval ( / ~ , # ; + 6 )  for some 6_ > 0  with probability 1, with a similar 
statement to (1.7) for 6 .  

We also prove a somewhat different version of Theorem 3. 

T h e o r e m  3'.  Let H = H o + g v  as in Theorem 3, and in addition 
suppose that g { iv(0)+ I I ~< e } ~< C :  for a finite constant C and a constant 
r />d .  Then, if 0 ~ < g ~ g ; ,  we can find 6+_(d, Ho, Do, g, C, q) such that H is 
exponentially localized in the intervals ()Li--~+,~.i) , (fli, l ~ i + ~ _ ) w i t h  
probability 1. 

The proofs of Theorems 2, 3, and 3' are based on auxiliary statements 
concerning the relationship of the spectrum of a periodic operator  A and 
its periodic restrictions to finite parallelepides in 7/d: they will be for- 
mulated as theorems below. In order to so, we introduce the following 
notations. If u, v ~ Z d, then uv = (ul vl ..... UdVd) ~ Z d. 

D e f i n i t i o n .  Let u , v ~ N  u. If v=nu for some n~ l~  J we will write 
u ~ v. If in addition all the coordinates of n are strictly greater than 1, we 
will write u < v. 

D e f i n i t i o n .  For  u~ r~ J we define a parallelepiped 

C " =  {0 ..... u ~ -  1 } x -.- x {0 ..... Ud-- 1 } c Z  d 

We will write C .  % C,, or  C,, < C,, if u ~ v or  u -< v, respectively. 

Suppose now that A is a q-periodic self-adjoint operator  in l'-(Y_ d, C D) 
and u>~q. Ther/ we introduce a finite matrix .4c. associated with the 
operator  A as follows. Let 

.4c . (x ,y)= ~ A(x , y+nu) ,  x , y ~ -  u (1.8) 
n E Z d 
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Now, we define 

Acu= {Ao,(x,y), x, yE C"} 

If u = q, will shall just write 

A =Ac~ (1.9) 

We call the matrix Ac- the periodic restriction of the local operator A to 
the parallelepiped C", u~q.  Let us denote by a(A) the spectrum of an 
operator (or matrix) A. 

T h e o r e m  4. Let A be a q-periodic self-adjoint operator in 12(7/a, C~ 
Suppose that C,,, n = 1, 2 ..... is a sequence of parallelepipeds such that 
C q ~ C,, -< C,, + t, n/> 1. Then 

~r(A)= U ~(Ac.), ~r(Jc.)---a(Ac.+,)=-~(A) (1.10) 
n>~  I 

This theorem enables us to control ther spectrum in vicinities of gaps 
of the periodic restrictions of the operator H to finite parallelepipeds. 

2. PROOF OF THEOREMS 1, 2, AND 4 

In this section we investigate the location of the spectrum of the 
operators H and Ho. We need first to extend some aspects of the well- 
known Floquet-Bloch theory to the periodic operatoprs Ho following the 
scheme developed for multidimensional periodic Schr6dinger operators in 
ref. 12. 

Floquet-Bloch Theory for Lattice Periodic Operators 

Let A be a q-periodic self-adjoint operator in -~n with entries A(x, y), 
x, ye7/a, defined in the previous section, and let Vj, l<~j<~d, be the 
unitary shift operators acting on Hilbert spaces 12(7] a, C ~ which acts ~is 
follows. If ej, 1 ~<j~< d, are the standard basis vectors in the lattice Za, then 
V i are defined by formulas 

(Vi~)(x)=~(Si(x)),  Si(x)), S j ( x ) = x - e j ,  x~77 d, l<~j<<.d 
(2.1) 

That is, Sj stands for the shift in the lattice 7/J by the vector ej. To proceed 
further we need an appropriate description of q-periodic operators. We 
adopt here the following notations: 
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M ~ is the set of D • D matrices with complex entries. 

~.~Dq, is the set of q-periodic C~ function ~(x), x ~ Z  a. 

D is the set of q-periodic M~ functions a(x), x ~ Z a. J lq  

d ~  is the set of q-periodic operators. 

V :=  V~' ... V:Z z �9 Z a. 

If a( - )E ~.~o and z ~ Z  a, a m ( x ) = a ( x - z ) ,  x s E  a. 

I . emma  2.1. Let a be the operator given by multiplication by the 
periodic function a(. ) ~ jgqO. Then: 

- D (i) For any a(-)~.//t'u ~ and z E Z  a, a, V-ESCq. 

(ii) A is a periodic operator with entries A(x,y) ,  x, ye7_ d, i.e., 
A e~'q~ if and only if there exist a finite positive p and a collection of 
q-periodic functions a_.( )e  ~ o  �9 ~" q, z �9 E d, and Izl ~< p such that the following 
representation is true: 

A =  ~. a.V:,  a = ( x ) = A ( x , x - z ) ,  x~7/d (2.2) 
I--I ~< p 

If in addition A is a self-adjoint operator, then the following equalities 
hold: 

a * ( x ) = a  =(x-z)=at'-_~..(x), x , z ~ Z  d, Izl<~p (2.3) 

Moreover, d q  ~ is an algebra and for any a ( . ) ~ , ~  ~ and z ~ _  d we have 

a V : =  V:a ~-:~ (2.4) 

Proof. The proof follows immediately from the definition of a 
q-periodic operator and operators Vj. | 

For any parallelepiped C", u ~ q, and a q-periodic operator A we have 
defined the matrix Ac, by formula (1.8) and called it the periodic restric- 
tion of A to C'. This periodic restriction possesses the following properties. 

l . e m m a  2.2. Let A be a q-periodic operator with entries A(x,y) ,  
x , ) ,~7/a  and C', u ~ q .  Then the function Ao(x,y) defined by formula 
(1.8) for any x, y e Z d is u-periodic with respect to both x and y. Namely 

Jc~(x+nu,  y ) = A c 4 x ,  y + n u ) = J c , ( x , y ) ,  x ,y ,  ne7/a (2.5) 

In addition, if A "is a self-adjoint operator, then the finite matrix Jcdx ,  y), 
x, y e C", is also self-adjoint. If B is another q-periodic operaor, then the 
following identity holds: 

(A~B)o, = A c-/~c. (2.6) 

822/75/5-6-15 
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Proof. The statements of the lemma easily follow from the definition 
of q-periodic operators, in particular (1.1). II 

It is clear from (2.4) that a q-periodic A commutes with the operators V% 
1 ~< j ~< d. Based on this fact, we shall introduce an operator ,,i which is on 
one hand unitarily equivalent to A, and on the other hand can be decom- 
posed into fibers ,4(x) by the direct integral 

J = I ~  A(x) dx, M = [ 0 ,  q ~ ' ] x  ... x [0 ,  qff ~] (2.7) 

where ,4(x) is a IQI x IQI matrix depending on x. In order to do so, we 
consider the Fourier transform F for ~UelZ(Za, C ~ defined by the 
formulas 

[F~](k)= ~'(k)= ~ e2"'k"~(x) (2.8) 
x E Z d 

~(x)  = I F - '  ~ ] (x )  = fK ~(k )  e -  Z~ikx dk, K =  [0, 1] a (2.9) 

which is a unitary transform of 12(27 d, C ~ to L2(K,C~ i.e., the Hilbert 
space of C~ functions on K which are square-integrable with respect 
to Lebesgue measure dk. We shall also consider the Fourier transform of 
the operator A and denote it by ,4 = FAF-~. It follows from the previous 
formula that ~(k) can be viewed as a (1 ..... 1)-periodic function on R d. 

Now, to use the q-periodicity of the operator A and to handle 
q-periodic functions on the lattice 2U it is convenient to introduce the 
discrete torus 

Z /7/q, q l ~ X  . , .  XqdT/ (2.10) 

where 7] d is treated as a ring with the ordinary operation of addition and 
the following operation of multyiplication for a, be71d: (ab)j=ajbj, 
! <. <~j<.d. Clearly, ~ as a set can be identified naturally with the 
parallelepiped Q = C q, and we will identify a q-periodic complex-valued 
function on Z d with the appropriate function on ~ (or Q). The space of 
C~ functions on ~ will be denoted by C ~ We introduce the 
scalar product for O, ~ C  = by 

�9 ~v= ~ * (2.11) 
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where ~*  is the vector adjoint to ~. We also introduce the Fourier trans- 
form ~ = Fq ~ of the C~ functions ~u on the discrete torus ~ in the 
ordinary way by 

'i~,= [ F q ~ ] , =  IQ[ -'/'- y~ eZ""t/qgt,,,, 
mE~Ta 

l ~ ,  F*Fq=I (2.12) 

where I stands for the identity matrix and F* is the matrix adjoint to Fq. 
In fact, Fq is a unitary matrix. 

Returning to the construction of the direct integral (2.7), we decom- 
pose the parallelepiped K into equal small parallelepipeds as follows: 

K= U MI, Mt=M+l/q,  l=(11 ..... ld), q = ( q t  ..... qd) ~2~a (2.13) 
IEQ 

where 

l/q = (11/q, ..... la/qd) 

and consider the corresponding decomposition of a function 
q~e L2(K, C~ 

qs: {~',(K),K~M, IEQ}, ~t(K)=~(x+l/q) (2.14) 

It follows from this formula that the function ~ ( x )  is a q-periodic function 
of 1~ Z d. So, if we introduce ~P(x)= { ~t(x), l~ Q} and the Hilbert space 
L2(M, C ~ (i.e., the Hilbert space of C~ functions on M which 
are square-integrable with respect to Lebesgue measure dr), then based on 
the formula (2.14) one can define the unitary operator W, 

[ W g ] ( k ) = ~ ' ( x ) ,  W: L2(K, CD)~-+ L2(M, C D'=) (2.15) 

Therefore, we have the following representation of L2(K, C ~ by the 
constant fiber direct integral: 

O ~  ~ d~r WL2(K, C~ �9 )=IM C~ (2.16) 

For an operator-A in 12(Z a, C ~ we shall denote ,4 = WFA(WF)-% From 
the definitions (2.1) of the operators Vj we easily obtain 

[~],(x)=exp{2~i(x/+lj /q/)}  ~,Oc), l<~j<~d, l ~ ,  ~r 
(2.17) 
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In order to find the appropriate representation for the operator A, we use 
Lemma 2.1 and represent q-periodic functions a=(x) as follows: 

a:(x)= ~ a. . ,exp{-2r t i ( l /q)x} ,  d._.l+~q=d_.,, x,l ,  a e g  a (2.18) 
I~Q 

where 

a: . ,= FQI '/2 r ~'t., qa:j,,'l a'=[a: ...... m~s a.,,=az(m),.. 

Then, taking into account (2.14), we get 

[ a : ~ ] ( k ) =  ~ 6 ..... ~ ( k - m / q )  

[a :  r = Y, ~:,, .... r 
m E 

IEs 

mes 

(2.19) 

(2.2o) 

For any operator (matrix) B acting in the finite-dimensional space C ~ we 
shall denote by /~ the following operator (matrix): 

= F q B F q  I (2.21) 

Lemma 2.3. 
defined by 

and hence 

Let Ui, 1 <~j<~d, be the unitary matrices on C ~ 

[UtT}]I  = g/i ,.,, l e ~  (2.22) 

[Ojg"]t=exp{2rciO/qi} ~l, l ~  (2.23) 

Let b~ be an .Jg~ function on the torus ~ and denote by b the 
operator given by multiplication by the function b~ in the finite-dimensidnal 
space C n'm. Write bl=l=b~_:, l e ~ ,  z e Z  a, where l - -  is understood 
modulo q. Then the following relationships hold: 

Proof. 
and (2.21 ). 

[/~7']1= ~ b~_,,T,,, l e ~  (2.24) 
t r t ~  

bU:= U:b ~-=~, z e Y  d (2.25) 

The statement of the lemma follows immediately from (2.12) 

I 
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L e m m a  2.4. Let ~=, Izl ~ p, be matrices on C D'~ defined by 

[ 6 : ~ ] ~ =  ~ 5...~ .... ~,, ,  le,tD (2.26) 
m e ~  

Then the following relationships are true: 

(2.27) 
[A'](x)=I,:,~oa_.e2"'~"=)(]=] ~(x), x e M  

In addition, the operator A has the desired fiber structure (2.7) and for the 
matrices A(x) the following representation is valid: 

J ( x ) =  ~ ~._e2~i(~:)0-', x E M  (2.28) 
Izl ~< p 

The matrices A(x), k e M, are self-adjoint. 

Proof. The proof of (2.27) follows straightforwardly from (2.2), 
(2.17), (2.19), and (2.20). In turn, the equality (2.28) is a consequence of 
(2.27) and (2.14)-(2.16). The self-adjointness of A(tc) follows from (2.28), 
(2.27), (2.3), and (2.25). I 

L e m m a  2.5. Let us introduce the following operators in 12(Z a, C~): 

Then, 

Vj(x)=e2'~'~JVj, l <~j<~d, A(x)=  ~ a~V()c): (2.29) 
Izl ~< p 

F .  = (2.30) 

Proof. The statements of the |emma follows from (19) and Lemmas 
2.2 and 2.4. [ 

T h e o r e m  2.6. If ~=F~IWF and A is a q-periodic self-adjoint 
operator, then we have 

~ = A(~) d~, M =  [0, q~-l] x - . - x  [0, q~ -1] (2.31) 

where the direct integral decomposition acts in the Hilbert space 

eM CD'~ dx (2.32) 
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In particular, the spectrum a(A) can be represented in the form 

or(A)= U a(,~(K)) (2.33) 
~ . 'EM 

Proof. The quality (2.31) follows immediately from Lemmas 2.4 and 
2.5, whereas the representation (2.33) is a direct consequence of (2.31). | 

Proof of Theorem 1. In view of the representation (2.33), the spec- 
trum a(A) is equal to the union of the range of values of the set of real 
functions 21(~), ~ e M(le  s which are respectively the eigenvalues of the 
matrices .40c). It easily follows from Lemmas 2.4 and 2.5 that the matrices 
.~(~c), and therefore their eigenvalues, are continuous functions of ~r This 
means that the union of the sets described above must consist of a finite 
number of intervals. Thios completcs the proof of Theorem 1. | 

To prove Theorem 2 wc will need some more auxiliary statements for 
the q-periodic operators. For a given parallelepiped C" and a u-periodic 
C~ function P(x), xe~_ a, let us denote by (nc~P)(x), x e C " ,  its 
restriction to C". Clearly nc~ is a one-to-one correspondence between 
u-periodic C~ functions on ~a and all C~ functions on the 
parallelepiped C". The statement below is an immediate consequence of 
Lemma 2.2. 

C o ro l l a r v  2.7. Suppose that A is a q-periodic operator in ~o ,  
C ~ C  q, and Pc(x),  x e C ,  is a C~ on C; then 

"?t c Pc  = rcc Art c i Pc  (2.34) 

In addition, if P(x), xe7/'l, is a u-periodic C~ function and 
C = C" ~ C '~, then 

A P = x c l  f lcXc P (2.35) 

L e m m a  2.8. Suppose that A is a q-periodic in L#o and 
Cq~  C~ <~ C,_. Then the following is true: 

tr(,4 c~) ~- a(.4 o.) (2.36) 

Moreover, the eigenfunctions of the matrix -~c, can be naturally extended 
to the corresponding eigenfunctions of the matrix .~ c:. 

ProoL To prove the inclusion, suppose that 2 is an eigenvalue of the 
matrix .4c,. Then there is a function P~(x), x~  C~, such that 

Ac, P l ( x ) = 2 P t ( x ) ,  x e C i  (2.37) 
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Now, let us extend the function ~ ( x )  periodically on C2 as follows: 

~ ' r  = ( n C 2  n CI 1 ~/1  ) ( X ) ,  x r  2 (2.38) 

Then by a straightforward computa t ion  we obtain from (2.34) and (zA ~)  
the following: 

"4c2 ~2 = 7tc2ATZct I ~1 = rtc2rtc, t "4cl ~J = 2~2 (2.39) 

This means that  2 ~ a(Ac2), which completes the prove of the lemma. 1 

For  the investigation of spectra we will need the following statement  
(e.g., ref. 13). 

Lemma 2.9 (Distance to the spectrum). Let o f  be a separable 
Hilbert space and A be a self-adjoint opera tor  in off. Then if tr(A) is the 
spectrum of A and 2 is a real number,  then 

dist{a(A),  2} = min II(A - , l )  ~ll (2.40) 
' / '  E ,rg. II 7'11 = I 

Proof of Theorem 4. Let us prove first the inclusion in the formula 
(1.10). To  do so, assume that  for a real 2 there exist a natural  n such that  
2 is an eigenvalue of the matrix Aco, i.e., 2~ t r (Ac ,  ), and there is a vector 
~(x), x e C,,, such that  

~lc ~(X)=27t(x),  xeC, ,  (2.41) 

Now, from (2.34) we easily obtain 

(ATrc' ~ ) ( x ) =  2(rrc. l ~) (x) ,  x ~ Z  d (2.42) 

which follows straightforwardly from the q-periodicity of the opera tor  A as 
an opera to r  in L# o. Then for any m > n we define 

~ , . ( x )= ( r r c l~U) (x ) ,  x e C  .. . .  7J . , (x )=0 ,  xr  (2.43) 

Let us pick an arbi t rary e > 0 and introduce the following notat ion for a 
function qS(x): 

I I~(x) l l~ = ~ I~(x ) l  2 (2.44) 
"r E C m 

Let us introduce also, for each j, 1 <~j~< d, the number  r/, which is the ratio 
of the corresponding edges of the parallelepipeds C,. and C. .  Then since 
the function n~. 1 ~ is periodic, it is easy to see that  

I [ ( A - 2 )  ~mII2Cm<~C([C..[/[C.[)( E rj-')[1~115. (2,45) 
I<~j<<.d 
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where C =  C(p, IIA II ) is a constant  dependent  on the range p of localization 
for the opera tor  A and its norm (see definition in Section 1). F rom the 
definition of ~u,,, it follows that 

II ~,,,112= 11~,,,ll2c..=(IC,~l/IC,,I)II ~11~. (2.46) 

Besides, from the definition of the sequence of parallelepipeds C,, it 
follows that for each j, l ) ~  ~ when m ~ ~ .  If we set now ~ , , , (x )=  
~%,(x)/][ ~'.,(x)ll, then from the relationships (2.45) and (2.46) and the pre- 
vious comment  we obtain for any given e > 0 and for sufficiently large m 

II(A - 2 )  @%11 ~e (2.47) 

From this and Lemma  2.9 we obtain the desired inclusion in (1.10). There-  
fore we have 

a(A)~_ U a(Ac.)  (2.48) 
n>~ 1 

To complete the proof, we have to prove the inclusion opposite to the 
above. If we pick again a positive e, then in view of L e m m a  2.9 we can pick 
~ 12(Z d, C ~ with norm 1 such that  

Now we define for any m 

~,,,(x) = ~U(x), 

II(A - 2) ~11 ~ ~ (2.49) 

XECm, ~m(X) = 0, xr (2.50) 

If ~.,(x) = t/%(x)/ll ~,,,(x)ll, then since the opera tor  A has a bounded norm 
and vector ~u belong to the corresponding Hilbert  space and has norm 1, 
we can pick a sufficiently large m such that 

II(A - 2 )  ~'.,11 ~<2~ (2.51) 

Now we note that  for any n>m, by (2.35), we have 

rtc,(A - 2 )  ~',,, = (Ac - 2) XC~m (2.52) 

In addition, the definition of ~ , ,  yields 

llXco ~,,,11 co = II ~',,ll = 1 (2.53) 

F rom (2.52), (2.53), and (2.51) we conclude that  

11(,4 co - 2) Zco g'mll C, ~< 2~ (2.54) 



Gaps of the Spectrum of Random Linear Operators 1011 

Therefore for any e there is an n such that 

dist {cr(Ac,), 2} ~<2e 

From this we may conclude that 

(2.55) 

a(A)__ U a(-4co) (2.56) 
n>~ l 

The last relationship together with (2.48) implies the equality in (l.10) 
which together with Lemma 2.8 completes the proof of Theorem 4. | 

l_emma 2.10. Suppose that the operator A=B+~ acts in /2(Za), 
where B is a q-periodic sclf-adjoint operator and ~(x) is a u-periodic real- 
valued function such that u~q and for some finite constants ~, ~2: 
~.t <~ ~(x) <~ ~2, xa Z a. Then for any parallelepiped C~ C" the following is 
true: 

a(,4c) ~ a(/~c) + [~l ,  ~2] _~ a(B) + [~l,  ~2] (2.57) 

a(A)c_a(B)+ [~, ,  ~___] (2.58) 

Proof. Without  loss of generality we may assume that - ~ j = ~2 = ~o, 
where ~o is a nonnegative constant,  since we can always redefine A as 
A = (B + t) + (~ - t), t = (~2 - ~J )/2. Keeping this in mind, let us note now 
that for any two linear bounded operators D~ and D2 

a(D,)c_a(D,)+ [ - d ,  d], d= l ID,-D~][  (2.59) 

Indeed, if 2r then ] ] ( D , - 2 ) - J ] ] < d  -~ and therefore 
( D ~ - 2 )  -1 is clearly a bounded operator,  which implies (2.59). Since 
[i~l[ ~ o ,  then (2.59) implies the first inclusion in (2.57) and (2.58). The 
second inclusion in (2.57) follows from the first one and (1.10). The lemma 
is therefore proved. | 

Proof of Theorem 2. Let us note that without loss of generality we 
may assume that u=(u~ ..... Ud) and the parameter p associated with a 
u-periodic local operator  A satisfy the following inequality: 

min uj > 2p + 1 (2.60) 
1 <~j<~d 

If not, we may always pick u'>-u such that u' satisfies (2.60) and treat A 
as u'-periodic. We shall assume from now on that the inequality (2.60) is 
sxatisfied for any period u we consider, in particular for u = q. 

We have defined the periodic restriction d c for any q-periodic 
operator  for C = C", u ~ q. We need to extend properly this definition for 
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local operators A which are not necessarily periodic. This can be done as 
follows. First of all, given a parallelepiped C - - C " + / ,  we construct an 
appropriate u-periodic operator associated with C and A, which we shall 
denote by A tc~. We note that for a local operator A the representation (2.2) 
is clearly still valid. We want to preserve the self-adjointness for A tc~ is A 
self-adjoint. The operator A is self-adjoint if and only if the constraints 
(2.3) hold. In order to provide these constraints, we represent the set 
{ z ~ U :  Izl ~<p} = {0} u z w ( - z ) i n  such a way that O e Z w ( - Z )  and 
Z c ~ ( - Z ) = ~ .  Clearly we can always do this. Then we may set a:, 
z E Z w  {0}, as we wish and define a.,  z ~ ( - Z ) ,  by the equalities (2.3). 
Now we define a linear operator zc which maps any CD-valued function 
a(x), x ~ Z d, onto a u-periodic function zcaas  follows 

a( f ) (x )=rca(x )=a(x ) ,  x ~ C ,  a~:C)(x+un)=alf)(x), x ~ Z  a (2.61) 

In other words, rca is a u-periodic extension of a coinciding with the func- 
tion a on the parallelepiped C =  C"+L Now since A is represented by 
(2.2), we define an associated u-periodic operator A tc~ by the same formula 
(2.2) where the a~, z ~ Z w  {0}, are replaced by a~ c~, z e  Uw {0}, and the 
remaining functions a~ cJ, z ~ ( - Z ) ,  are defined to keep the constraints 
(2.3). With this definition the u-periodic operator A ~c~ associated with the 
self-adjoint operator A and the parallelepiped C-- C" + l is also self-adjoint. 
Having this, we define the periodic restriction .4 c of a local operatior A on 
a parallelepiped C =  C"+  l using (1.8) as follows: 

Ac = [J~C~]c~, C = C " + l  (2.62) 

De f in i t i on .  We say that a point x is a boundary point of a 
parallelepiped C if there exists j, 1 ~< j ~< d, such that either x + ej r C or 
x - e j  r C. The set of boundary points is denoted by OC. 

The statement below shows that the periodic restriction of A on C 
does not differ much from the regular restriction A(x, y), x, y E Z d. 

Lernma 2.11. Let A be a local operator. If C = C " + l ,  l~7_ d then 
the following equalities are true: 

.4c(X,y)=A(x ,y ) ,  x , y ~ C ,  dist{x, aC}, dist{y, 0C} > p  (2.63) 

where dist{x, 0C} = max=~,~c [x-z l~ j .  If A is a self-adjoint operator, then 
,4 c is seif-adjoint as well. 

Proof. The statements of the lemma follow straightforwardly from 
(1.8), (2.61), (2.62), and (2.60). I 
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The construct ion of the periodic restrictions is clearly applicable to 
the operators  H = H 0 + g v  defined by (1). Whenever  we shall need to 
emphasize that  H depends on v we write H = H(v). 

L e m m a  2.12.  The spectrum of the opera tor  H is non random with 
probabil i ty 1, i.e., there exists a closed set a ~ • such that with probabil i ty 
1, a (H)  = a. 

Proof. We note that  the opera tor  H is metrically transitive and then 
we can just refer to ref. 14. II 

Let ~aq be the set of real-valued functions ~(x) which are u-periodic for 
some u ~ q and satisfy r ~< ~(x) ~< ~2. 

T h e o r e m  2.13.  Suppose that C,,, n =  1,2 ..... is a sequence of 
parallelepipeds such that  C q ~ C , , ~ ( C , , + , ,  n>~l. Let the opera tor  
H = Ho + ~ and the spectrum a be defined as in Theorem 2. Then the non- 
r andom spectrum a of the opera tor  H can be represented as follows: 

a =  U a [ H ( # ) ]  = 0 a [ H c . ( r  =o'(~1,  ~2) (2.64) 

ProoL 

where 

a (~ , ,  ~2) = a ( H o ) +  [~ , ,  ~2-1 (2.65) 

First of all we note that  the following equalities are true: 

U a [ H ( ~ ) ]  = U a[ /~co(~)]  = a ( H 0 ) +  [ ~ ,  32] (2.66) 

These inequalities follow straightforwardly from Theorem 4 and Lemma  
2.10 if we note that  for a u-periodic ~ from ~'q the opera tor  H(~) is 
u-periodic and, in addition, we may set ~(x) = t, where t is a constant  such 
that - l ~ < t ~ < l .  

Recall now that the function ~(x) is a r andom function, i.e., we have 
a probabil i ty space (~2, ~ ,  P)  and ~ ( x ) =  ~,o(x), where co is a realization 
from f2. Let us observe that  it follows from Lemma  2.12 that there exists 
a set s'2~ ~ f 2  such that  P ( I2~)=  1 and 

a(H(~,o)) = a, co e 121 (2.67) 

Let us pick any positive e and co such that  (2.67) is true. Assume that ). e a. 
Then in view of L e m m a  2.9 there exists m and a vector ~u in the Hilbert  
space such that  II ~11 = 1 and 

I I (n (~ ,o ) -  ;t)~ll ~<e, ~/'(x) = 0, x r  (2.68) 
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We may impose the extra constraint "e (x)=  0, x r  C .... on the vector "e 
since the operator  H is local and bounded. Then for any n > m 

H(~,o) "e(x) = Hc,(~,o) "e(x), x ~ C,, (2.69) 

and therefore 

II ( I~c . (~ ,o )  - ~)  'ell c~ ~< 

The last equality implies that 

~.E U ,~[/~c.(~)] 

and consequently 

(2.70) 

To prove the opposite inclusion, let us pick again a positive e and a 
u-periodic ~ ~ ~q. Then we suppose that 2 ~ a [H(~ ) ] .  Since the operator  H 
is local and bounded, we can apply again Lemma 2.9 and get for a natural 
m the equality (2.68) with o9 dropped, i.e. there exists a vector "e, II ~11-- 1, 
such that 

I I (H( r  ~<e, "e(x) = 0, x r  C,, (2.72) 

Now we note that in view of the conditions imposed on r (see 
Theorem 2) for any positive 6 there exist a set 12r P(t2r = 1, such that 

V6, V~EOr  3I=I(6,0~)~zd: max Ir (2.73) 
x~C,~+l  

Moreover,  if we write "el(x) = ~ ( x  - l), then since r is u-periodic we have 
from (2.72) 

VleZ~:  I I ( H ( ~ ) - 2 )  "e, II ~<e (2.74) 

Clearly, if we pick 6 small enough, then 

Vco e f2r 31=l(~,o9)~Y_,'~: 

From this we immediately obtain 

cr___ ~r [n(g)] ,  

and consequently 

II(H(~,o)- 2) "e, ll ~ 2~ (2.75) 

e ~q (2.76) 

~ U o[H(~) ]  (2.77) 

o '_  Y o[ /~c . (~) ]  (2.71) 
n~> 1,~ ~ ,~q 
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Thus, (2.66), (2.71), and (2.77) imply the desired relationship (2.64), which 
completes the prove of the theorem. I 

In order to use the multiscale analysis (9~ we need to get exponential 
estimates for the resolvent of the operators H and their periodic restric- 
tions. For this purpose we will adapts the Combes-Thomas  argument to 
our operators. We start with a description of the relevant resolvents. Let us 
denote by b,-, X ~ - d ,  the standard basis in the space 12(7/a), i.e., be(x)= 1, 
b.,.(y)=0, yvLx,  y E Z  d. In the case of I~-(Ed, C ~ we introduce the basis 
b ...... ~ = 1  ..... d, i.e., b~.x(ot, x ) = l ,  and b~..,.(fl, y ) =  1, if flv~ct or y ~ x ,  

= 1 ..... d, y ~ Z a. Suppose that A is a local operator (not necessarily peri- 
odic) acting in 12(E d) or in 12(Z a, C ~ with entries A(x ,y ) ,  x, y E Z  ~. For 
such an operator the representation (2.2) is still applicable. Then if ( is a 
complex or real number and ( r  a(A ), we may consider for the cases /2(7/d) 
or 12(2U, C~ respectively, the Green's functions 

G(~, x, y) = 

G(~, x, y) = 

We will often 

(b.,., (H-~)-Jb . , . ) ,  x, y 6 E  a (2.78) 

G(C, ~, x,/L y) 

(b ...... ( H - ( ) - ~ b / j , y ) ,  ~ , f l = l  ..... d, x, y e E  d (2.79) 

drop ~ and fl in the notation of the resolvent for brevity. 

L e m m a  2.14. Suppose that A is a local operator described above 
such that for a positive constant c we have IA(x, y)l ~< c, x, y e E d. Suppose 
also that 

dist {(, a(A)} --6 > 0  (2.80) 

Then there exists a positive constant b = b(c, p) (p is the number associated 
with the local operator A) such that 

IG(( ,x ,y ) l<~26-1e  -b~lx--''l, x, y e E  a (2.81) 

where 

Ixl= ~ Ixjl (2.82) 
1 ~<j~< d 

Moreover, if A is a u-periodic operator, then the following identity is true: 

" G ( ( , x + u , y + u ) = G ( ( , x , y ) ,  x, y c E  d (2.83) 

ProoL For ct ~ C d let M,  be the operator given by multiplication by 

M=(x) = e 2=i(='x), x ~ E d (2.84) 



1016 Figotin and Klein 

Then in view of (2.2) and (2.4) we have 

A(ot)=M~AM~ t= ~ a:V(c0--, Vj(~)=eZ""~Vj, l<~j<.d (2.85) 
Izl ~ p 

Note that A(~) coincides with the relevant operator in (2.29), but now 
e C a. Clearly, the last representation implies the existence of a constant 

K = K( c, p) such that 

IIA - A(~)I[ ~ K[cq (2.86) 

In view of (2.80) we have immediately IIG(()II~6-L This inequality 
together with the inequality (2.86) implies for G(~, ~)= E A ( 7 ) - ~ ] -  t 

Ila(cq ~)ll ~ 26 - ' ,  Ic~l < 5/(2K) (2.87) 

Now we note that 

[G(ct,~)](x,y)=G(~,x,y)exp{27ti~(x-y)},x, y e Z  a (2.88) 

From this and the obvious inequality I[G(~,~)](x,.v)l~llG(cq~)ll we 
obtain the inequality (2.81) by taking an appropriate c~. 

The identity (2.83) is a direct consequence of the u-periodicity of the 
operator A. This completes the proof of the lemma, i 

I _ e m m a  2 .1  5 .  
satisfied and let us consider for C =  C" + 1, le E d, the resolvent 

G'c(~,,x,y)=[(.21c--~)-l](x,y), .v, y e C  

Then the following estimate is true: 

IG'c(~,x,y)l<<,26-~[l+2H(v, 6)]e -b'~l ..... J", x, y e C  

where b is the same constant as in Lemma 2.14 and 

Suppose that the conditions of Lemma2.14 are 

(2.89) 

(2.90) 

H(v, 5)= l-I (1-e-ba '"J l )  - l ,  ] x - y l , = m i n ] x - y - n u l  (2.91) 
1 <~j<~d n E Z d  

ProoL We note first that in view of the definition of the periodic 
restriction J c in (2.62) we may assume without loss of generality that A is 
a u-periodic operator and C =  C". Keeping this in mind and using (2.83) 
together with the identity 

[ A ( x , y ) - ~ ] G ( ~ , y , z ) = 6  ...... x, z e Z  u (2.92) 
y e •d 



Gaps of the Spectrum of Random Linear Operators 1017 

where fix.: is the delta function, we obtain 

~ [A(x,y)-(]G(( ,y ,z+un)= ~. fix.:+ .... 
n E 2vd .V E Z d n E Z d 

From this, (1.8), and (2.5) we obtain 

x, z e C  (2.93) 

Therefore, 

[ , 4 c ( x , y ) - ~ ] ~ c ( ~ , y , z ) = 6  ...... x, z E C  (2.94) 
y e  C 

G'c(~ ,x ,y )=(~c(~ ,x ,y )= ~ G(~ ,x ,y+un) ,  x , y ~ C  (2.95) 
n ~ Z d 

From this and the previous lemma we immediately obtain 

iG,c(~,x,y)l<~26-~ ~ e -hal , -y  . . . .  I, x , y ~ C  (2.96) 
I I  E Z 'l 

If we recall the definition (2.91) of Ix - . v l ,  we can easily prove that there 
is n' ~ Z d such that 

I x - y l , =  Izl, z = x - v - n ' u = c u ,  0 4  Icjl ~ 1/2, 1 <~j<~d (2.97) 

Now we rewrite the right side of the inequality (2.96) using (2.82) as 
follows: 

e-b,~lx-Y ..... I= y '  e-b,~l,- ....... I= 1-I ~ e -b'~l'~-''ll'jl (2.98) 
h E 2  rd t I E Z  d I <<.j<~d n ~ _  

We shall need the following elementary inequality: 

~" e - ' l  ...... I ~ < e - " l " l [ l + 2 ( 1 - e - " ) - ~ ] ,  0~<lml~<l/2, c > 0  (2.99) 
n E Z  

which can be verified by a direct computation. Applying this inequality to 
the right side of (2.8) and combining the result with the inequality (2.96), 
we get the desired estimate (2.90). The iemma is proved. | 

Proof of Theorem 3. Let us consider the left edge 2i of the gap 
(2i, /ti); the right edge #j can be treated in a similar way. We will use the 
conditions for localization given in Theorem 2.1 of von Dreifus and 
Klein. 191 We start with some definitions. For u e Ed we define H ~'~ by 

H ~ o " ( x , y ) = H o ( x + u , y + u ) ,  x , y ~ _  d (2.100) 
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We then set 

Hf"~=H~o"~ +gv, GI"~(~)=(H~o'I-~)-I (2.101) 

Notice that a(HU'~)=a with probability 1. For l e N ,  x ~ Z  d, we define 
7=/(1 ..... 1) and d~(x)= C 7 -  [//2] + x ( [ y ]  is the entire part of the real 
number y) and for A c Z a 

SpA = {y~  A: 3 z ~ Z  a - A ,  Iz-yl~_ <<-p} (2.102) 

Recall that p is the range of Ho. Also for A ~ 77 a we write H A = {H(x, y), 
x, y ~ A }, which is the matrix associated with the restriction of H to A with 
Dirichlet boundary conditions. 

D e f i n i t i o n  2.16. Let xe77 d, E e R ,  m > 0 ,  l>p .  We say that A~(x) 
is (m, E)-regular if 

max IG~'~l~,.,(E;.,:,y)l <~e .... 1/2, VyeOpA,(x)  (2.103) 
It E C q 

Otherwise we say that A~(x) is (m, E)-singular. 

Let us fix p > d, an interval I c  ~, mo, and Do (see Assumption V). The 
von Dreifus-Klein criterion says that there exists B = B(d, Do, too, p) < oo 
such that if 

1 
P{Aco(x) is (too, E)-regular for all E~  I} >/1 - - -  (2.104) Lg 

for some Lo>  B, then there exists 6=6(Lo ,  mo, d, Do, p ) > 0  such that the 
spectrum of H is exponentially localized in ( E o -  6, Eo + 6). 

R e m a r k  2.17. Von Dreifus and Klein only discuss the case where 
H = -,d + gv. But their results are easily seen to extend to the case when 
- z l  is replaced by a translation-invariant operator with a finite range p. 
The remark that - zJ  can be replaced by a q-periodic operator H o is due 
to Spencer, ~61 who noticed that if the maximum over all translations of Ho 
is introduced in the definition (2.103), the whole proof goes through. 

Theorem 3 now follows from the following result. 

Lemma2.18.  Let us fix 0 < / 2 + < 1 ,  and let p + = / a { [ ( 2 + , l ] } ,  
g + = g(1 - 1 2 +  ). If L is a sufficiently large positive integer such that/Z ~ q, 
we have 

lim P{AL(0) is (b(g§ --g')/4, 2)-regular} = 1 (2.105) 
p + ~ 0  
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uniformly in )`E [)`i-g', )`i] for g', 0 < g ' < g + ,  where b is given in 
Lemma 2.14. 

ProoL Let gL denote the event that v(x)<~ O+ for all x e A L(0). If ~'L 
occurs, and 0 < g' < g + ,  then for all u e C u we have from (2.90) that for all 
)  ̀E [2i - g', 2i] 

2a+ 1 
1(~"]~o)(2; x, y)[ ~< exp( -bg"  Ix -Ylz)  (2.106) 

g+ 

for L sufficiently large in relation to q, for all x, yEAc(O), where 
g"=g+ -g ' .  Define now F~L ") by the equality 

H ~"~ - ~ " )  ~ F ~  "1 (2.107) O, AL(O) - -  " "  0 , A L ( 0 )  - -  

i.e., F~ '~ is the difference between matrices corresponding to the periodic 
and Dirichlet boundary conditions. Note that IIF~')II ~<C(no), where 
C(Ho) is a constant which depends just on operator Ho. Then if G, stands 
for the resolvent of the corresponding matrix HA, the resolvent identity 
gives 

G~;'~',o,()`) = d%'~o,()`) + d~'~,o,()`) r'~"' a%'~o,()`) 

(u)  t~. (u)  [ , ] -0  G';'~,o,()`;0, y )=  dAL,o,()`;0, Y)+ )-', -A,,o,,-,v, t) r~"(t,s) G%~o,()`; s, y) 
S, t E A L ( O )  

(2.1o8) 

IfyeOpA,(O), then using (2.106), we get 

G ( . , )  , .  Aao~tZ; 0, Y)I 

2 a +  1 
<<-~-e-bg"IL/Z-P~+(2L+ l)ZdC(Ho)IIG~']~o~(2)ll e -bg'~L/2-p~ (2.109) 

since F~'l(t,s)=O unless s,t~OpAL(O). Now let ~/VL(2) be the event 
IIG~]lol(2)ll ~< L za for all u~ C q. Then we get 

la~L'co,(X; o, y)l ~ - - F  exp ~ - bg" - p [ 1 + (2/. + 1) "-d C(tIo) L '~] 

.~< exp (bg '_ '~L)  (2.110) 

for all )̀  E [2~-g ' ,  )`~], if L is greater than a finite constant L'(d, b, g", Ho). 
Thus 

P{AL(0) is (bg"/4,).)-singular} ~< P{~_} + P{~WL().)} (2.111) 

822/75/5-6-16 



1020 Figotin and Klein 

On the other hand, for all 2 ~ [ 2 ; -  g',  2i], 

P{d'~_ } ~< Ldp(v(O) > [2+ } <. p+ L d (2.112) 

and by Wegner's estimate 

L d 2Do 
P{~C~(A)} <~2D~ L : " -  rC'tl L - "  (2.113) 

g g 

This completes the proof  of the lemma, and hence Theorem 3. 1 

Proof of  Theorem 3'. We use the localization criterion given by 
Spencer/~s~ The proof  is similar to the proof  of  Theorem 3, so we will only 
point out the differences. Lemma 2.18 is replaced by the following. 

L e m m a  2.19.  Let m L = 2 ( d + 2 ) l o g L / L .  Under  the hypotheses of 
Theorem 3' we have 

lim sup P{AL(0) is (rot,  2i)-regular } = 1 
L ~  

(2.114) 

Proof. The lemma is proved in a similar way to Lemma 2.18, for 
scales such that L, ~ q. Here we define gt. to be the event that v(x)<~ 1 - 6 L  
for all x~AL(O), where 5L = (log L)2/L. By our assumptions we have 

(log L) 2' 
P{g~} <-Ldp{v(O)> I - 6 L }  <~ CLa6~ =CLd L ~ - - - ~ 0  as L ~ o o  

(2.115) 

since r/> d. 
Theorem Y now follows from Theorem 1 in ref. 15. 
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